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COMMENT 

Conformal charge of constrained fermionic models in a 
non-trivial topological background 

D C Cabraf and E F MorenoS, 
Departamento de Fisica. Universidad Nacional de La Plata, CCN’ 67, 1900 La Plata, 
Argentina 

Received 22 June 1990 

Abstract. We consider a constrained fermionic model in a non-trivial topological sector 
and compute the conformal charge showing its dependence on the topological charge. 

Dotsenko and Fateev [ l ]  have shown that the correlators of the general conformal 
theory in two dimensions can be represented by averages of vertex operators in a 
Coulomb-like system with non-trivial boundary conditions. 

In their approach, in order to obtain minimal models, an appropriate background 
charge at infinity is added to an originally free boson system. This results in a modified 
boundary condition on the bosonic fields at infinity and then the holomorphic energy- 
momentum ( E M )  tensor gets an additional term: 

a’ 
az 

A.T(z) =ia,,cp(z) 

where 2a0 is the charge placed at infinity and p ( z )  is the bosonic field. The correspond- 
ing central charge is changed to: 

C=1-24a; .  ( 2 )  
Since the EM tensor has an imaginary part the theory it defines is non-unitary for 
arbitrary ao,  but with an adequate election of the charge one can obtain models in 
the minimal series. 

Non-trivial boundary conditions can be naturally associated with topological struc- 
ture. It is the aim of this work to investigate whether a generalization of the coset 
construction in fermionic models including topological effects leads to modifications 
of the EM tensor (and consequently of the central charge) analogous to those obtained 
by Dotsenko and Fateev [l]. To this end we shall follow a recent proposal by Bardacki 
and Crescimano [ 21 for treating constraints represented by gauge fields with non-trivial 

The coset construction can be realized in the path-integral framework starting from 
free fermionic models in which suitable currents are constrained by introduction of 
the gauge fields acting as Lagrange multipliers [3,4]. We shall show that if one allows 
these gauge fields to have non-trivial topology one obtains a modification of the EM 
tensor resembling that in (1) with the topological charge playing the role of Dotsenko 
and Fateev’s charge at infinity. 

topology. 
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We start from a fermionic Lagrangian in two-dimensional Euclidean spacetime 
coupled minimally to an Abelian gauge field A ,  which acts as a Lagrange multiplier 
(for details see [4]): 

Y= $(is+&+. (3) 
Dirac fermions + transform into the fundamental representation of U(k) .  

Consider the gauge field in the N topological charge sector, i.e. 

1 - 4.rr [ s 2  * F  d’x = N (4) 

where S’ is the two-dimensional sphere and * F  is the dual of the electromagnetic 
stress tensor F,” 

* F =  E , , , F , ~ = ~ E , , ~ , A , .  ( 5 )  

The corresponding generating functional reads 

where the A: integration is restricted to the N topological charge sector. 

the condition 
This theory is manifestly gauge invariant, so the gauge has to be fixed. We choose 

d,A, = 0. (7)  

The corresponding Fadeev-Popov determinant can be exponentiated using anticom- 
muting ghost 77 and f .  One then has 

Two-dimensional fermionic models coupled to gauge fields are usually solved by 
performing a change of variables which decouple fermions from gauge fields [ 5 ] .  
However, for regular transformations this decoupling is valid only in the zero topologi- 
cal charge sector since for fields A: satisfying (4) it is not possible to globally define 
A, in the form 

A ;  = E , d ” 4  (9) 

and this relation is at the root of the decoupling. One possibility to attack this problem 
is to allow for non-regular transformations leading to the fermion decoupling. Instead, 
following [2], we shall write A: in the form: 

A: = 2,” + ~ , ~ d ~ 4  (10) 

where A: is a fixed, patch-dependent configuration with topological charge N and 
the field 4 can be defined globally since we take it in the zero topological sector. 

Writing A ,  in this form, the &dependent part can be decoupled from fermions 
using the following change of fermionic variables [ 6 ] :  
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The fermionic Jacobian JF can be evaluated using standard methods [ 51, The answer 
is: 

In terms of the new variables 2, x and 6, the generating functional reads 

where *g = E,,a,A;. 

We can now compute the Virasoro central charge of this model. In order to obtain 
the conformal anomaly we must study the non-regular term on the operator product 
expansion (OPE) of the EM tensor with itself. 

It must be stressed that because of the non-zero topological charge of the field A,”, 
the index theorem [7] guarantees the existence of klNl square integrable solutions of 
the Dirac equation: 

[ i ~ + , P l v  =o .  (14) 

These zero modes can be evaluated explicitly [2] and one finds that for N>O 
( N  < 0) the solutions are all right handed (left handed): 

77:=( :) N<O 
77 La 

for a = 1,2 , .  . . , IN1 and a = 1,2, .  . . , k. 
It is for this reason that any correlator of an arbitrary number of operators of the 

form ,fR&xL (where d is some operator) vanishes. (An identical result is obtained 
with operators of the form ,fL&xR.) 

Hence we conclude that we have no fermionic contribution to the total central 
charge. The fermionic part of the generating functional only appears as a multiplicative 
factor which cancels out when computing EM tensor vacuum expectation values. 
(Actually, due to zero modes this factor is zero and has then to be regularized, for 
example in the form proposed in [8].) 

To obtain the bosonic contribution to the Virasoro anomaly we must compute the 
following correlation function: 

and TB in the right-hand side of (16) is the EM tensor associated with SB. 
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It is useful to write the field A,” in the form: 

2,” = NAL (19) 

A: = E,Yd”77  (20) 

where the field 2; has topological charge equal to 1. Then writing: 

the action takes the form: 

[(a,+)’ - 2 N 4  U 771 d’x. 
27r 

This action can be written as that of massless bosons interacting with a con- 
veniently chosen gravitational field. To see this, consider (in s’) the action [9]: 

where R is the scalar curvature. 
We choose the conformally flat metric: 

g,v = 8,” exp(477) (23) 

& R = 2d,a,77. (24) 

where the field 77 is the same that appears in (20). In this metric we have 

It is important to stress that for this election of the gravitational field we have 
consistency with the Gauss-Bonnet theorem. This theorem can be seen as a topological 
constraint on the curvature of the surface of a given genus: 

Here, x( 8 )  is the Euler characteristic: 

x ( 8 )  = 2g, - 2  (26) 

and g, is the genus of the compact surface 8. For the sphere S2, we have g,z = 0 and 
/y(s2) = -2. 

In terms of the field 77, the Gauss-Bonnet theorem reads: 

jS2 a,a,t, d2x = -27r (27) 

and this is nothing but the quantization condition (4) for the field 

to that in equal (18). 

evaluated varying the action with respect to the metric: 

TB(z) = - 4 :  d z 4 a z 4 :  +;hTa:4. 

(see (20)). 
Then choosing the conformally flat metric (23) the action (22) becomes identical 

The holomorphic EM tensor for the theory defined by the action (19) can be 

(28) 
The additional (second) term in T ( z )  comes from the interaction with the scalar 

curvature and has the same form as the correction found by Dotsenko and Fateev [ 13 

Note that our additional term is real while its counterpart in ( 1 )  is imaginary. 
(see (111.  
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The contribution of the bosonic sector to the central charge can be easily calculated 
using (16): 

thus giving: 

C B = 1 + 3 N 2  

In order to obtain the total central charge cT one has to include the ghost contri- 
bution: 

Cghosts = -2. (31) 

C T = 3 N 2 - 1  (32) 

Then the total central charge in the N topological charge sector is: 

Although we only deal with EM tensor correlators, all kind of multipoint correlation 
functions can be evaluated in our approach using the generating functional (13). One 
can then follow the programme of Belavin et a1 [ 101 for general conformal field theory. 

It is interesting to note that our result for the central extension (32) is valid for 
N # 0. The n = 0 case has as special feature that the Dirac equation (14) has no zero 
modes. In this case free fermions d o  contribute to the total central charge and we then 
have, instead of (32), the result [4] 

CTZk-1 (33)  
that corresponds to an  U( k )  free fermionic theory (with c = k )  in which an  U( 1 )  current 
is constrained. 

In  summary, by considering a constrained fermionic model in a non-trivial topologi- 
cal sector we have obtained a modified central charge (30) which depends on the 
topological charge N. Our approach was inspired by the proposal of Dotsenko and  
Fateev [ 13 concerning conformal theories with non-trivial boundary conditions. 
However in our model one naturally obtains a real holomorphic EM tensor and  hence 
the theory it defines is automatically unitary; moreover, the central charge gets increased 
and  then we d o  not obtain minimal models. In order to obtain such models within 
our approach, fermionic models constrained by non-Abelian gauge fields with non- 
trivial topology should be considered. It should be also of interest to discuss in this 
context how the central charge is modified if one considers manifolds other than S'. 
We hope to report on this issue elsewhere. 
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